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Cavendish Laboratory, Madingley Road, Cambridge CB3 ONE, UK 

Received 4 July1991 

Abstract. We a s s s  the viability of non-sdkonsbtent total energy calculations 
using the Harris-Fodkes energy functional. The self-consistent electron d-ty in 
11 aluminium structures is resolved into components that are qualitatively similar 
to the free pseud-atomic density. For many of the structure the components dis- 
play significant anisotropies, whilst between the structures there are also important 
differences. By studying the sensitivity of the Harris-Foul& energy functional to 
perturbations in the input electron density, we are able to relate these differences in 
atomic-like densities to differences in energy. W e  condude that no estimate for the 
electron density based on the superposition of spherical densities can he expected to 
give errors in the energy of less than 0.03 eV per atom. Given the significant v& 
ation in atomic-like electron densities from structure to structure, my transferable 
density scheme is also prone to energy errors. By constructing a least-squares fit of 
our electron density data to a given functional form, we conclude that the emom in 
the absolute energies per atom are typically of the order of 0.05 eV whilst for enersy 
ditTerences they drop to 0.01 eV. 

1. Introduction 

The development of ever more efficient algorithms and access to ever more powerful 
computers has allowed the ab-inifio simulation of progressively larger and more com- 
plicated condensed matter systems [l]. In spite of this progress there are still many 
situations in which an ab-initio approach is not feasible. The calculation of total ener- 
gies and hence the simulation of such systems is only possible by the use of empirical 
and semi-empirical schemes [2-71. 

Nowadays most ob-initio total energy calculations are carried out within the den- 
sity functional formalism [SI, using a local approximation to the exchangecorrelation 
energy. As the name suggests, within this formalism, it is the electron density which 
plays a central role. For a given input density, a Hamiltonian is constructed. Output 
eigenvalues, wavefunctions and electron densities are calculated. An estimate for the 
energy is then given by the Kohn-Sham functional, which is a sum of the occupied 
eigenvalues and a number of terms dependent on both the input and output electron 
density. Better results may be obtained using the output density as the input for the 
next cycle and iterating towards convergence. For the correct input electron density 
the functional is stationary, a local minimum, and gives the correct energy of the sys- 
tem. For this same density the input and output densities are equal, and are said to 
be self-consistent. If the energy is evaluated near but not at  the self-consistent elec- 
tron density then only second-order errors in the energy will result. However, given 
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the high degree of reliability of the other aspects of these calculations, one generally 
iterates very near to the true ground state density. For this reason these calculations 
are generally self-consistent. 

Electron density is equally important in many empirical and semi-empirical 
schemes. In the embedded atom method [4], the effective medium method [2] and 
the glue model [3], the energy of a given atom is determined by the electron density 
it feels from its neighbours. In the many-atom bond order potential model 151, the 
strength of a bond is determined by its environment which, in turn, is determined by 
the electron densities of its neighbours. Foulkes and Haydock [9] have shown that even 
in the semi-empirical tight-binding model [7], the form of the energy may be derived 
from suitable assumptions about the nature of the electron density. 

Although central to all schemes, the treatment of the electron density does of 
course differ significantly between self-consistent schemes, and the other methods. In 
the former, the electron density used to evaulate the energy is essentially correct and 
of no presupposed form. In the latter the electron density used is not exact and 
is constrained to be comprised of atomic-like, spherical electron densities centred on 
the nuclei which make up the system. The relative success of empirical and semi- 
empirical schemes suggests that  this assumed form of the electron density may in fact 
be reasonable. 

Motivated by this observation and using an alternative energy functional, firstly 
Harris [lo] and then, independently, Foulkes and Haydock [9] have proposed a new 
method for non-self-consistent total energy calculation. The self-consistent electron 
density is approximated by superposition of atomic-like densities. A corresponding 
electronic potential and Hamiltonian are generated. Occupied eigenvalues of the 
Hamiltonian are found and summed over, and various other energy terms depend- 
ing only on the explicit input electron density are calculated, All the terms are added 
together to give an estimate of the total energy which depends only on the input 
electron density. The output electron density is never calcualed. 

The ideas of Harris, Foulkes and Haydock have been investigated by Read and 
Needs [ll] and by Finnis [12]. Read and Needs have studied the performance of the 
Harris-Foulkes functional for hulk and for surfaces of silicon and aluminium using a 
superposition of pseudo-atomic densities. They have found that for bulk structures 
the functional does well. However, for surfaces, the functional performs less well. 
Finnis has performed similar calculations, and obtained similar results. I t  had been 
postulated that the Harris-Foulkes functional displayed a local maximum around the 
self-consistent density. On the basis of this, Finnis tried to optimize the atomic- 
like densities he superimposed, so as to maximize the value of the Harris-Foulkes 
functional. It is now known [13] that the functional is in fact either a local minimum 
or a saddle-point, and hence this procedure must be considered invalid. 

The main aim of this paper is to attain an understanding of the nature of the self- 
consistent electron density in a wide range of aluminium structures. We wish to un- 
derstand the extent to which it may be considered to be a superposition of atomic-like 
densities, to what extent these densities are spherically symmetric, their relationship 
to the true pseudo-atomic density and the extent to which they are transferable from 
structure to structure. 

The purpose ofour work is threefold. Firstly we  wish to understand the magnitude 
of self-consistency effects. In this way we may appreciate the limitations of those 
empirical and semi-empirical schemes which ignore [3-6] or approximate them 121. 
Secondly we wish to explore the possibility of performing accurate non-self-consistent 
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total energy calculations. That is, can we, for any structure, write down a priori a 
good approximation to the self-consistent electron density, avoiding the need for time- 
consuming iterations to self-consistency? Finally, in obtaining transferable atomiolike 
densities we would have the ingredients for a quick, approximate, but non-empirical 
total energy scheme. 

The outline of the paper is as follows. In section 2 we calculate the self-consistent 
charge density of a number of aluminium structures. We explore the possibility of 
resolving these charge densities into localized components. We study the differences 
between these localized distributions and the true pseudo-atomic electron density. In 
section 3 we study the sensitivity of the Harris-Foulkes energy functional to errors in 
the input charge density. In section 4 we use the results of sections 2 and 3 to deduce 
=me bounds on the reliability of any non-self-consistent schemes. We conclude in 
section 5 with a summary of our results and the direction of our future work. 

2. The self-consistent charge density 

2.1. Computational details 

The first step of our work is to choose those aluminium structures that we wish to 
study. Since one of our motives for this study is as part of an on-going investigation 
of many-atom bonding in metals, it is natural that we use those structures which we 
have already studied in an alternative context [14]. All of these structures are periodic. 
Details of the unit cells, whose axes are mutually orthogonal, are given in table 1. All 
these structures have an atomic nearest neighbour separation of 2.85 A but differ in 
coordination number, with values ranging from 0 for our atomic structure to 12 for 
the FCC structure. 

For each structure we generate the self-consistent electron density. We use a Car- 
Parrinello algorithm [15], expanding the wavefunctions in a plane wave basis with a 
cut-off energy of 190 eV. To represent the ions we use a local pseudopotential of the 
HeineAbarenkov type [16,17] and for exchangecorrelation we use the function of 
Ceperley and Alder [18] as parametrized by Perdew and Zunger [19]. Many of our 
structures are metallic, which implies a need for a large number of Ppoints. In order 
to achieve this cheaply, we use the k p method [ZO], and solve over an 8 x 8 x 8 
Monkhorst-Pack grid of k-points [21]. 

2.2. Resolution into atomic-like components 

Consider a periodic system of N identical atoms whose nuclei are at positions R,. 
By identical we mean not only that the atomic species are identical, but also that 
the environment of each atom is identical. We may formally write the self-consistent 
charge density P ( T )  of this system as a superposition of identical components. In 
anticipation of the form of these components, we will refer to them as atomic-like 
components of ALDs, and represent them by the sympol PALO: 

Taking the Fourier transform of (1) we have for each reciprocal lattice vector of our 
system 
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Table 1. Lattice parmetePS and atomiccoordinatesforehe 11 aluminiumrtructures. 

Structure a (A) b (A) c (A) Atomic coordinates 

FCC 4.0305 4.0305 4.0305 (0.00,0.00,0.00) 
(0.50,0.50,0.00) 

(0.50,0.50,0.50) 

Vscancy lat rice 4.0305 4.0305 4.0305 (050,0.50,0.00) 
(0.50,0,00, 0.50) 
(0.50,0.50,0.50) 

Simple cubic 2.8500 2.8500 2.8500 (0.00,0.00,0.00) 
Diamond 6.5817 4.6540 4.6540 (0.00,0.00,0.00) 

(0.25,0.50,0.00) 
(0.50,0.50,0.50) 
(0.75,O.OO. 0.50) 

Atom 5.7000 5.7000 5.7000 (O.~,O.OO,O.OO) 

Line 2.8500 5.7000 5.7000 (0.00,0.00,0.00) 
square lattice 28500 2,8500 5.7000 (0.00,0.00,0.00) 
Clare-packed layer 2.8500 4.9363 5.7000 (0.00,0.00,0.00) 

(0.50,0.50,0.50) 
Square slab 8.5500 2.8500 2.8500 (0.00,0.00,0.00) 

FCC slab '7.3471 413305 4.0305 (O.00,O.OO.O.OO) 
(0.27,0.50,0.00) 
(0.27,0.00,0.50) 
(0.00,0.50,0.50) 

Graphite 5.7000 8.5500 4.9363 (O.~.O.OO.O.OO) 
(0.00, 0.33,O.OO) 
(O.W.O.50,0.50) 
(0.00,0.83,0.50) 

(0.50, 0.00,0.50) 

(0.23,0.00.0.00) 

where S ( G )  is the structure factor and V is the volume of the unit cell. For those 
values of G for which S ( G )  is not zero, we then have 

At first glance, the information furnished by equation (3) regarding the ALD for this 
structure is rather restricted. In particular, it is limited to that finite number of 
reciprocal lattice vectors, G, consistent with the periodicity of the structure, and for 
which S(G) is not zero. This is not a problem. One may always consider a structure as 
being comprised of large supercells whose dimensions are multiples of the dimensions 
of the original unit cell. The values of G consistent with this new cell will then be more 
densely distributed in reciprocal space. However, the structure factor corresponding to 
those new values of G will necessarily be zero and equation (3) cannot be employed. 
To overcome this problem we displace the atoms of our supercell by a very small 
amount. Given that the environment of each atom has been barely modified we may 
still assume that all atoms are equal. (The validity of this assumption is addressed in 
section 2.5.) The function pAtD(G) is unmodified, but may now be sampled at  many 
mbre points. 

For some of our structure the atoms do not have identical environments, and the 
previous approach needs some modification. For the graphite structure, there ate two 
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distinct types of atomic environment which we may denote A and B. However, all 
atoms are equally disposed with respect to the z axis and so for any reciprocal lattice 
vector G, in the z direction we may rigorously write 

P ~ L D ( G J  = P L ( G . ) .  (4) 

Solution of equation (3) now proceeds as before. 
For both the FCC slab and the square slab, we have atoms which, although inequiv- 

den t  with respect to the z axis, are equivalent with respect to y and L. For reciprocal 
lattice vectors in the yz plane we may therefore proceed as above. For reciprocal lat- 
tice vectors in the z direction we proceed as follows. Consider first the square slab: 
Denoting the atom on the lower layer (with z coordinate 0.0) as A and that on the 
upper layer as B we have, for some Gz, 

If we now slightly raise the upper atom to new position lZ:ew whilst retaining the 
dimensions of our supercell and iterate to charge self-consistency, we will generate a 
new value p'(G,) for the same G, component of the charge density. If the displacement 
is very small then we may assume that the ALDS of atoms A and B are unchanged, 
and hence 

p'(G=)V = piLD(G=) + p:LD(G,)eiRf=-'G= . (6) 

Equations (5) and (6) may be solved simultaneoulsy to yield the required ALD data. 
Data for the FCC slab and for the diamond structure are obtained by the same proce- 
dure. 

Having discussed a t  length our inversion procedure, we turn to its results. 

2.3. Free atom 

The crosses on Figure 1 show the result of our inversion procedure for the self- 
consistent charge density of our free-atomic structure. Although data is only available 
at  those values of G corresponding to reciprocal lattice vectors of the system, the 
smoothness of the plot indicates that data at  intermediate points could be found by 
interpolation. In order to facilitate this interpolation, we have sought to find a good 
analytical fit for the data.  Guided by the form of the pseudopotential we have tried 
the form, 

[Acos(GR) + G - ' ~ i n ( G R ) l e - ~ ~ '  (7) 3 k2 
PAT(G) = ( R  + A ) ( @  + G2) 

with R = 0.725 A, A = 0.416, k = 1.75 A-' and 0 = 0.022 A2 we find an excellent fit 
shown as the bold line on figure 1. 

The magnitude of pAT(G) is fairly negligible for all G > 3 A-'. Therefore only a 
very small range of G corresponds to appreciable charge density. The importance of 
this will become apparent later. 
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r . .  . .  I , . . . I . ~  

0 5 ’  10 

Figure 1. The electron density of a free aluminium pseudo-atom in reciprocd space 
as a function of wave number (+) and analytic fit to these data (full curve). 

2.4. Bulk slruclures 

Four ofour 11 structures in table 1 may be described as bulk structures. They are the 
Face-centred cubic, the vacancy lattice, the simple cubic and the diamond structures. 
For these structures, and for the unit cells given in table 1, the smallest reciprocal 
lattice vectors with non-vanishing structure factors are relatively large. The inform+ 
tion that could be obtained regarding the ALDB of these structures would therefore be 
limited to relatively small wavelengths. To overcome this problem we have adopted 
the procedure outlined in section 2.2. We use the modified supercells of table 2. For 
three of the structures this involves the construction of large supercells, for the dia- 
mond structure it involves distortion of atoms within the same unit cell and solution 
by the method of equations (5) and (6). 

The results of this procedure are plotted in figure 2. For the diamond structure the 
A and B atoms are almost equivalent and their average has been plotted. In order to 
facilitate comparison we have also plotted the fitted atomic data of equation (7). The 
first thing to notice about these points, is that they lie reasonably close to the curve 
representing the pseudo-atomic data. That is, for this wide range of bulk structures, 
the self-consistent electron density is a t  least approximately representable by a simple 
superposition of identical components, and that these components are very similar to 
the pseud-atom density. 

On closer inspection we note that for each of these structures, the value of the ALD 
at low G lies above that of the pseudo-atom data. The curvature of p(G) at low G 
is proportional to  the second moment of the real space charge density. We therefore 
conclude that for these structures, the real space ALDr are contracted relative to that 
of the pseud-atom. This result is in agreement with previous work [12], and is also 
predicted by the effective medium theory [2]. 
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Table 2. Lsttieeparametnsandstomiccoordinatslor thelowdistortedaluminium 
StIUCtlveS. 

S t r u d u r S  s (A) 6 (A)  c (A) Atomis coordinates 

Distorted FcC 8.0610 4.0305 4.0305 (O.OO,O.OO,O.OO) 
(0.24,0.50,0.00) 
(0.24,0.00,0.50) 
(0,00,0.50,0.50) 
(0.50,0.00,0.00) 
(0.76,0.50,0.00) 
(0.76,0.00,0.50) 
(0.50,0.50,0.50) 

Distorted vacancy lattia 8.0610 4.0305 4.0305 (0.24.0.50,0.00) 
(0.24,0.00.0.50) 
(0.00,0.50,0.S0) 
(0.76,0.50.0.00) 
(0.76,0.00.0.50) 
(0.50,0.50,0.50) 

Distorted diamond 2.8500 2.8500 2.8500 (O.OO,O.OO,O.OO) 

Diamond 6.5817 4.6540 4.6540 (O.OO,O.OO.O.OO) 
(0.24,0.51 ,O.OO) 
(0.51,0.51.0.51) 
(0.76,0.00,0.51) 

Distorted diamond I1 6.5817 4,6540 4.6540 (0.000,0.000,0.000) 
(0.240,0.508,0.0~) 
(0.505,0.505,0.5oS) 
(0.760,0.000,0.5OS) 

Distorted simple cubic 11.4000 2.8500 2.8500 (0.00,0.00,0.00) 
(0.24,0.00,0.00) 
(0.50,0.00,0.00) 
(0.76.0.00,0.00) 

A number of values of G are common to more than one of our structurs. At these 
values of G we may directly compare the ALDs for the different structures. Differences 
of 0.1 electron are typical, with differences of up to 0.2 electron occurring for certain 
values of G. The differences between the ALDS of the different structures appear to 
follow no apparent pattern. 

For some structures we have symmetrically unrelated reciprocal lattice vectors 
which have the same value of G. Comparison of the data for these points allows 
assessment of the degree of anisotorpy in the ALD. The spreads in this case are no 
smaller than those between different structures. Differences of around 0.1 electron are 
still typical. 

In conclusion, the ALDS for these structures qualitatively resembles the pseudo- 
atomic density. For each structure there are important anisotropies, whilst the varia- 
tions between different structures are significant and follow no apparent pattern. 

2.5. Surfaces 

The atoms in a bulk structure are characterized by a relatively isotropic environment. 
We now turn to structures in which the atomic environment is strongly anisotropic. 
In the previous section we found that for bulk structures, the self-consistent density 
at least qualitatively resembled a superposition of pseudo-atomic densities. How must 



8358 I J Roberison et a1 

0 I : : : : : : : : : : :  

0 1 2 3 4 

G/ A-' 
Figure 2. The atomic-like densities in reciprocal space for low aluminium bulk 
structures. Facecentred cubic [+), Vacancy lattia (x ) ,  diamond (0) and simple 
cubic [ A ) .  Full curve shows d fitted form to the electron density of a free aluminium 
pseudo-atom. 

this picture be modified for surfaces? 
In order to investigate this, we have taken the remaining six structures of ta- 

ble l. Five of them are surface-like, the remaining one linear. We have resolved the 
corresponding self-consistent densities into atom-like components. For three of these 
structures, all the constituent atoms are equivalent and the procedure is trivial. For 
one of them, graphite, all the atoms are equivalent with respect to the z axis. We use 
equation (4) to obtain pALo(Gz) and ignore all G lying in the yz plane. 

For the FCC slab and the square slab, all atoms are equivalent for reciprocal lattice 
vectors lying within the planes of atoms, so for G in these directions we use equa- 
tion (4). To obtain data for values of G perpendicular to the surface, we slightly 
distort our upper layer of atoms, and solve using equations (5)  and (6). The results of 
this procedure are displayed in tables 3 and 4. The significant imaginary part of the 
electron density is due to the abence of inversion symmetry in the atomic environment. 

Table 3. The atomic-like densities of A and B atom a5 a function of G, lor the 
square slab. 

o(A) ptLD(G) P:LD(G) 
,.~. .... . , , .  

0.735 2.394 + 0.034; 2.394 - 0.034i 
1.470 1.384 t 0.067i 1.384- 0.0671 
2.204 0.420 t 0.103i 0.420+ 0.1mi 
2,940 -0.007 - 0.045; -0.007 + 0.045i 
3.674 -0.062 - 0.045i -0.062 + 0.045i 

~ . ~~~ ~~. 

~ ~ ~~~~ ~ ~~~ 
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Table 4. The atomic-like demities of A and B atoms as a fundion of 0, for the 
Fcc siab. 

G ( A )  PL,D(G) P%,D(G) 

0.855 2.159 + 0.06s 2.159 - 0.06% 
1.710 0.954 + 0.011i 0.954 - 0.015i 
2.566 0.189 f0.047i 0.192 - 0.045i 
3.421 -0.098 + 0.001i -0,099 - 0.001i 

In order to  test the validity of our assumption that our small displacements of the 
ions around does not significantly affect the atomic-like densities, we have calculated 
piLD(G,) and pZLD(Gc) for the square slab using a less distorted structure than that 
in table 2. The values obtained agree with those in table 3 to within 0.01 electrons 
demonstrating the validity of the assumption and the reliability of our results. 

The results for the six structures are shown in figure 3. For the two-slab structures 
we have plotted the real part of the electron density. Given the relative magnitude of 
the real and imaginary parts, the neglect of the imaginary part is reasonable. Again 
the points lie around the line representing the pseudo-atomic data. In spite of the 
strongly inhomogeneous environment of atoms in these structures, it is still possible 
to represent approximately these self-consistent electron densities as a superoposition 
of atomic-lie densities. 

0 : : : : I : : : : ;  
l . l . . l l l l l l l . , , l l ,  

0 1 2 3 4 

G/ A-’ 
Figure 3. The atomic-like densities in reciprocal space for six alwninium structures. 
Face-centred cubic slab ( x ) ,  square slab (0). graphite layer (*), dose-packed lays  
(O) ,  square layer (+) and line ( A ) .  Full curve shows a fitted form to the eledron 
density of a free aluminium pseudo-atom. 

The data points at low values of G lie somewhat above the pseudo-atomic curve 
although not as M U C ~  as was the case for the bulk structures. Again the real space 
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ALDJ for these structures are somewhat contracted relative to that  of the free pseudo- 
atom. We attribute the smaller contraction to the fact that a free-atomic environment 
resembles much more closely that of an atom at a surface than an atom in bulk. 

The spread in the values of the ALDs for those values of G shared hy more than one 
structure is larger than that for bulk structures. The degree of anistropy displayed in 
the ALD. is also larger, hardly surprising given the greater anisotropy of the structures 
concerned. 

I J Roberison et a/ 

3. The form of the Harris energy surface 

3.1. Introduction 

In the previous section we established that the self-consistent densities of a wide range 
of structures can be resolved into atomic-like components which are broadly isotropic 
and not too different from the electron density of the free pseudwatom. However, 
some anisotropies were present, as were deviations in these A t D s  from structure to 
structure. To model all of these densities using a simple spherical density would 
therefore necessarily introduce certain errors in the electron density. Given that one 
of our aims is to assess the feasibility of non-self-consistent total energy calculation, 
it is necessary to  determine how these errors in the electron density would translate 
into errors in total energy. This is the purpose of this section. 

3.2. Some properiies of ihe Ham's-Foulkes funciional 

The Harris energy functional introduced separately by Harris and Foulkes [9,10] is 
defined as 

where E, is the Hartree energy, E,, is the exchangecorrelation energy, E,,,, is the 
nuclear-nuclear interaction, px, is the exchange correlation potential, si is the ith 
eigenvalue and wi is the corresponding occupation probability. 

At the self-consistent electron density, the Harris-Foulkes functional is stationary 
and gives the correct ground state energy. For input densities sufficiently close to the 
correct density, errors in the energy are second-order with respect to the errors in the 
electron density. For some time it was thought that at  the correct electron density the 
functional was a local maximum. It  is now known that this is not true [13] and that 
within the local density approximation the functional is in fact either a saddlepoint 
or a local minimum. 

For the special case of nearly uniform systems, rather more about the functional is 
known [13]. A critical value of G, namely G,, which is related to the average electron 
density of the system, may be calculated. For errors in the charge density in Fourier 
components with G < C, the functional shows large negative errors. For errors in the 
charge density in Fourier components such that G > G, the functional shows errors 
which are positive and somewhat smaller. Errors in different Fourier components of 
the electron density produce errors in the energy which are additive. That is, the 
error in the energy produced by the perturbation of two distinct Fourier components 
is equal to the sum of the errors induced by performing the perturbations separately. 
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Most of our structures are rather non-uniform, and it would be unwise simply 
to apply these results for nearly-uniform systems. We therefore want to study the 
shape of the Harris functional around the self-consistent density for our 11 structures. 
Unfortunately, for those structures whose supercells contain large amounts of vacuum 
many perturbations lead to regions of space with negative electron density. Even those 
perturbations which do not, can produce rather anomalous behaviour in the Harris- 
Foulkes functional 1221. For this reason we have restricted our survey to the four bulk 
structures. Our method is as follows. 

For each structure we take the self-consistent electron density. We select a star of 
Fourier components and perturb each by an amount equal to one electron divided by 
the square root of the multiplicity of that star. We thereby ensure that the pertur- 
bation is properly normalized. This new density is then used to evaluate the Harris- 
Foulkes energy functional. The procedure is repeated for a number of stars. 

Our results are displayed in table 5 and in figure 4. The first thing that to notice 
is that the form of the results for the different structures are rather similar. That 
is, in each case we can identify a critical value of G, marking the boundary between 
those perturbations which produce negative errors in the energy and those which 
produce positive errors. Assuming uniformity and ignoring electron correlation, we 
may calculate G, as 

G, = An'/' (9) 
where A = 6.19 and the electron density n is measured in electrons per cubic angstrom. 
.For each structure we have evaluated G,. We find for the FCC, the vacancy lattice, 
the simple cubic and the diamond structures the values of G, are equal to 3.52 A-', 
3.20 A-', 3.13 A-' and 2.71 A-' respectivley. Inspection of table 5 reveals these 
values to be in reasonable agreement with our results. They are in each case a little 
on the high side, reflecting the inhomogeneity of the true electron density and the 1/3 
power in equation (9). For each structure, for values of G greater than G,, the error 
in the energy is small and saturates. However, for values of G less than G, the errors 
in the energy are large and diverge as l /G4,  

The relevance of these results for the implementation of non-self-consistent calcula- 
tions are clear. The Harris-Foulkes functional is not equally sensitive to perturbations 
of equal magnitude in the electron density. Errors in the electron density a t  high wave- 
lengths can produce errors which are far greater than perturbations of equal strength 
at low wavelengths. In constructing an estimate for the self-consistent electron den- 
sity, it is therefore crucial that the low Fourier components are correct. Some errors in 
the higher Fourier components are acceptable. It is also clear, that non-self-consistent 
calculations are far less likely to succeed for systems which possess a large number of 
small reciprocal lattice vectors with non-zero structure factor. 

4. The viability of spherieal t ransferable  densities 

In section 2 we saw the extent to which the atom-like electron densities whicb make 
up the self-consistent densities differed from the pseud-atomic density. In section 3 
we saw the effect which an error in a single star of Fourier components of the charge 
density has on the energy as calculated by the Harris-Foulkes functional. On the basis 
of the results of these two sections, we are now in a position to consider the viability of 
an U pn'ori estimate of the electron density based on the superposition of atomic-like 
densities. 
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Table 5. The sensitivity of the Harris energy functional b peturbatioru in the de- 
tmn density. Errors in the energy are displwyed I L ~  a function of the magnitude of the 
Fourier component being perturbed. Perturbation is fixed in maeitude throughout. 

G (A-]) e m r  in energy (eV) 

FCC 1.56 
2.21 
2.70 
3.12 
3.47 
3.82 
4.41 
4.68 
4.93 
5.17 

VSUUKY lattice 1.56 
2.21 
2.70 
3.12 
3.47 
3.82 
4.41 
4.68 
4.93 
5.17 

Simple cubic 0.55 
1.10 
1.65 
2.21 
2.76 
331 

Diamond 0.95 
1.36 
1.66 
1.91 
2.14 
2.33 
2.70 
2 a6 
3 3 0  
4.67 

-0.991 
-0,209 
-0.044 
-0.010 

0.029 
0.040 
0.050 
0.069 
0.073 
0.064 

-0.659 
-0.130 
-0.008 

0.036 
0.089 
0.096 
0.090 
0.134 
0.163 
0.143 

-36.961 
-3.456 
-0.615 
-0.083 

0.001 
0.033 

-2.386 
-0.614 
-0.076 
-0.058 
-0,012 

0.015 
0.133 
0.053 
0.073 
0.097 

4.1. Sphericity 

To what extent is i t  possible to  reproduce any self-consistent density by the super- 
position of spherical densities? Of our 11 structures, only the atomic structure has 
atoms which are truly spherical. The other structures are all to a lesser or grater 
extent non-isotropic. In section 2 it was noted that this anisotropy led to variations 
in p,,,(G) for a given structure and for a given G of up to 0.4 electrons. To rep- 
resent pALD(G) by a spherically symmetric function would therefore introduce errors 
in pALD(G) of up to 0.2 electrons. In calculating the electron density for the whole 
system one would sum this error over all components of a star and over all a t o m  of a 
unit cell. From what we have learnt in section 3 we would expect the corresponding 
error in the energy to be fairly significant. In order to find its magnitude, we have 
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Figure 4. Sensitivityof the Harris functional to peturbations in the eleetmndensity. 
Errors in the energy are shown 115 a function of the magnitude of the Fourier compo- 
nent being perturbed. In each case the magnitude of the perturbation is fixed. Data 
is shown for the four bulk structures. Face-centred cubic ( A ) ,  Vacancy lattia (+), 
diamond ( x )  and simple cubic (0). Full curve shows a fitted form to the eledmn 
density of a free aluminium pseudo-atom. 

adopted the following procedure. 
For each of our structures in turn, we take the self-consistent density and by 

the procedure of 2.2 resolve it into atom-like components. We take these ALDs and 
‘sphericize’ them. That is, for each value of G for which we have differing values of 
pALD(G), we take the average. We now take this sphericized density and use it as 
an input density to calculate the energy of the structure from which i t  was derived. 
The results of this procedure together with the correct self-consistent energies, are 
displayed in table 6 .  

For many of our structures the energy difference is small, due in part to the near- 
sphericity of the constituent atomic environment. IIowever, an equally important 
reason is undoubtedly that for our structures, very few reciprocal lattice vectors not 
related by symmetry possess the same magnitude. We note that if the E and y dimen- 
sions of the linear structure had not been precisely in the ratio 2:1, then the energy 
difference in sphericizing would have been significatnly reduced. 

Allowing for this, the energy differences for the linear, diamond and square struc- 
ture of 0.03 eV, 0.01 eV and 0.01 eV respectively should not be regarded as anomalous. 
It is possible that the positive and negative errors which arose due to the neglect of 
anisotropy cancel. However i t  would be dangerous to rely on such a cancellation, and 
we conclude that an energy error of around 0.02 eV per atom is an upper bound on 
the reliability of any method which relies on the superposition of spherical densities. 
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Table 6. Eflect of charge snisotmpy on mer& of the 11 structures. Column 1 
shows correct electron density. Column 2 shows result or using 'rpbericized' electron 
density. 

FCC -58.2al 

Vacancy lattice -58.072 
Simple cubic -57.885 
Dismond -57.3n 
Atom -54.909 
Line -56.236 
square lattice -57.255 
Chrcpadid  layer -57.453 
S q u m  slab -57.590 

Graphite -56.883 

FCC slab -57.817 

-58.287 
-58.072 
-57.885 
-57.359 
-54.909 
-56.203 
-57.247 
-57.452 
-57.592 
-57.817 
-56.882 

4.2.  Tkunsferubiiity 
The previous section has shown that the restriction of spherical ALDs is likely to result 
in errors in the total energiespf up to 0.03 eV per atom. To the extent that  the ALDs 
in some of the structures are more spherical than in  others, it should be already clear 
that  there is n o  universal ALD that will describe adequately all structures. However 
we should also like to know what additional differences there are between the atom- 
like densities which make up the different structures. That  is, how do the spherically 
averaged atom-like densities differ from structure to structure, and is it possible to 
introduce a universal spherically symmetric density which yields errors i n  the energy 
no greater than those of the previous section. 

In order to investigate this, we have taken the fitted pseudo-atomic charge density 
of equation (7) and have used i t  as the input density to calculate the energy of our 11 
structures. Our results are shown in the first column of table 7. The errors range from 
0.003 to 0.253 eV per atom, being smallest for the bulk and largest for the surface 
structures. From considerations in sections 2 and 3 we tentatively attribute this to 
three factors. Firstly there is the greater sensitivity of the Harris functional to errors 
in the electron density at low G .  secondly there are errors in the electron densities 
which are generally larger for smaller G and lastly the bulk structures have fewer 
reciprocal lattice vectors at  small G. 

In order to support this interpretation, we adopt the following procedure. The 
self-consistent charge density of each structure is taken in turn. For each reciprocal 
lattice vector G > 3 A-' we then replace the self-consistent charge by that given by 
equation (7) i.e. the corresponding value of equation (7) multiplied by the structure 
factor for that  value of G. This new charge density is now used to calculate an 
estimate for the energy of the structure. The results of this procedure are displayed in 
the second column of table 7. We now repeat the procedure but this time perturb only 
those components such that G < 3 A-'. The results of this procedure are displayed 
in the final column of table 7. Comparison of the columns of table 7 separate out the 
effect on the energy of those errors in low Fourier components and those errors in high 
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Fourier components. As expected, those errors in the low Fourier components produce 
large negative errors in energy, whilst those at high G tend to produce a positive and 
somewhat smaller error. 

Table 7. Viability of transferrable atomic-like density. Column 1 shows energk 
of the 11 structures using the pseudo-atomic enrity. Column 2: h.l above but using 
pseub-atomic density only for those Fourier components with G < 3 A. Column 3: 
as above hut only using pseudo-atomic density for those Fourier components with 
G > 3 A .  

Energy per atom 

FCC -58.305 

Vacancy lattice -58.118 

Simple cubic -57.880 

Diamond -57.368 

Atom -54.893 

Line -56.381 

Squ- lattice -57.410 

Clmepacked layer -56.626 

Square dab -57.709 

FCC slab -58.070 

Graphite -57.048 

-58.285 

-58.062 

-57.871 

-57.339 

-54.903 

-56.212 

-57.241 

-57.432 

-57.568 

-57.809 

-56.840 

-58.298 

- 58.1 16 

-57.887 

-57.362 

-54.904 

-56,360 

-57.405 

-57.620 

-57,707 

-58.067 

-57.008 

We conclude that smaller errors in the bulk calculations are purely an artifact of 
the small number of low reciprocal lattice vectors that these structures posses. They 
are in no way an indication that the atom-like charges in bulk structures particularly 
resemble that of the free pseudo-atom. 

The errors in the energy in table 7 are rather large. Inspection of figures 2 and 3 
suggests that  these errors could be reduced by using an electron density similar to 
that of equation (7) but somewhat dilated in reciprocal space. In order to find such a 
density we have taken the low G data of figures 2 and 3 and again using the functional 
form of 7 performed a least-squares fit. We find new values R = 0.725 A, A = 0.316, 
k = 1.91 A-' and p = 0.012 A'. The new fit is shown in figure 5. We take this new 
density and use it to calculate the energy of 11 structures, with the results shown in 
table 8. Although the error for some of the structures has been increased (particularly 
that for the atom), the overall agreement is better. The errors for the surfaces are 
reduced by around 75% and the maximum error is reduced from 0.253 e\' to 0.079 eV 
per atom. All of the energy errors are negative and of similar magnitude. As a 
consequence the energy differences between structures other than the atomic, show 
errors of around 0.01 eV per atom, with the smallest being 0.01 eV and the largest 
0.054 eV. 

5. Conclusion 

We have shown that it is at  least qualitatively reasonable to consider the self-consistent 
charge density of a large number of structures to be composed of the superposition of 
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Table 8. Energy of the 11 structwes wing optimized atomic-like electron density. 

Energy using modified 
atomic densky 

Structure (eV per atom) 

FCC -58.339 
Vacancy lattice -58.121 
Simple cubic -57.932 

Diamond -57.396 
Atom -55.001 

Line -56.267 

square lattice -57.314 
Close-packed layer -57.506 

Square slab -57.652 
FCC Slab -57.896 
Graphite -56.923 

0 1 2 3 4 

G/ A-' 
Figure 5. The atomic-like densities in reciprocal space lor six aluminium structures. 
Face-centred cubic slab ( x ) ,  square slab (O), graphite layer (e ) ,  closcpafked layer 
( O ) ,  square layer (+) and line (A) .  Full a w e  shows 1eart-sq"ares fit to the data at 
low 0. 

atom-like entities. These entities are very similar to the true pseudo-atomic density 
but slightly dilated in reciprocal space, i.e. contracted in real space. 

Anisotopy in the local environment generates significant anisotropy in the electron 
density. Consequently, any estimate of the electron density based on the superposition 
of spherical entities is likely to yield errors of around 0.02 eV per atom. 
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Use of the pseud-atomic density in the 10 structures besides the free atom, yields 
errors in the energy of up to -0.253 eV per atom. The errors are principally due 
to a negative contribution from errors in the low Fourier components of the electron 
density. For our bulk structures which hve very few low reciprocal lattice vectors the 
errors in energy are inevitably less, although this would not be the case for amorphous 
structures. 

We have found a single spherical density which correctly yields the energy of our 
10 non-atomic structures to within 0.079 eV per atom. Energy differences are mostly 
correct to within 0.01 eV per atom, the worst case being 0.054 eV per atom. 

Since errors in an electron density can result in both positive and negative errors in 
energy, it is possible for less accurate electron densities to give more accurate energies. 
However this error cancellation is fortuitious, and it is not possible to rely on this 
effect. We conclude that the energy errors stated here are an upper bound on the 
reliability of any non-self-consistent scheme. 
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